Chemistry

Chapter 10 Liquids and Solids – but mostly liquids

Section 1

Chapters: 10.1 Intermolecular Forces 10.8 Changes in State

Bonding Forces in molecules

There are two types of bonding forces in molecules

1. Intramolecular forces

2. Intermolecular forces

Intramolecular Forces

Intramolecular forces occur when electrons are shared between atoms

Intra meaning "Within"

These are forces we are most familiar with

They include:

- Ionic Bonding
- Polar + Nonpolar Covalent Bonding

Intermolecular Forces

Intermolecular forces are forces between molecules.

There are three types of intermolecular forces that we will talk about.

- Hydrogen Bonding
- Dipole-Dipole
- London Dispersion Forces

Strength of Force

Important: Intramolecular bonds are stronger than inter molecular forces.

Intermolecular Forces – Hydrogen Bonding

- These are intermolecular forces that occur between molecules where the molecules have polar covalent bonds that involve hydrogen.
- The negative pole of the electronegative atom is attracted to the positive pole of the hydrogen atom.
- This is the strongest intermolecular force.

Intermolecular Forces – Hydrogen Bonding

Example: Hydrogen Bonding in Water

Note: The dotted lines represent the intermolecular forces between the molecules.

Intermolecular Forces – Dipole-Dipole Forces

- This is similar to hydrogen bonding with the exception that there is no hydrogen atom.
- This can only occur when the molecule possesses polar covalent bonds.
- The negative pole of the electronegative atom is attracted to the positive pole of the less electronegative atom.
- This is the second strongest intermolecular force.

Intermolecular Forces – Dipole-Dipole Forces

Example: Dipole-Dipole Interactions

Note: This intermolecular force is present in all molecules that have polar covalent bonds.

- These are intermolecular forces that exist between Nobel Gases and nonpolar molecules
- These are forces that occur when instantaneous dipoles can occur within the molecule.
- The polarizability of the molecule will affect the London Dispersion Force
- In general The higher the molecular weight = strong London dispersion force
- These are the weakest intermolecular forces.

Demonstration

Example: London Dispersion Forces

Note: This intermolecular force is the main force keeping molecules together with nonpolar molecules and Nobel gases.

- Common molecules that exhibit London Dispersion Forces as the strongest intermolecular force.
- Nobel Gases
- All Hydrocarbons
- Any other nonpolar molecules

- The reality of the world is that all molecules have London Dispersion Forces.
- The only force we care about when looking at a molecule however is the strongest force.
- If a molecule has hydrogen bonding, we consider that is the main intermolecular force and we disregard the London Dispersion Force.
- Same with Dipole-Dipole.

Intermolecular Forces

Why do we care?

- These forces can tell us certain properties of molecules
- The stronger the intermolecular force the higher the boiling point will be, the more viscous a liquid will be, and the lower the vapor pressure will be.

Intermolecular Forces - Trends

Intermolecular Forces

Strategy for determining which molecule has the strongest intermolecular force.

- 1. Look to see which molecule exhibits hydrogen bonding
- 2. Next look for Dipole-Dipole interactions
- 3. Finally look for London Dispersion Forces
- $4. \quad LD < DD < HB$
- 5. When two molecules have London dispersion forces the "bigger" molecule will have stronger intermolecular forces

- Which one of the following is the strongest intermolecular force experienced by noble gases?
 - a. London dispersion forces
 - b. Dipole-dipole attraction
 - c. Hydrogen bonding
 - d. Ion–ion interactions

- Methane (CH₄) is a gas, but carbon tetrachloride
 (CCl₄) is a liquid at room conditions
 - Which of the following statements explains this phenomenon?
 - a. CCl_4 is a polar molecule and CH_4 is not
 - b. CCl₄ and CH₄ have different geometries and shapes
 - c. CH₄ exhibits hydrogen bonding and CCl₄ does not
 - d. Cl is more electronegative than H
 - e. None of these statements is correct

- Which of the following species exhibits the strongest intermolecular forces?
 - a. CH₄
 - b. H₂O
 - c. N₂
 - d. CO
 - e. He

- What type(s) of intermolecular forces is (are) exhibited by methane (CH₄)?
 - a. Hydrogen bonding and London dispersion forces
 - b. Hydrogen bonding
 - c. Dipole–dipole and London dispersion forces
 - d. London dispersion forces

- When a water molecule forms a hydrogen bond with another water molecule, which atoms are involved in the interaction?
 - a. A hydrogen atom from one water molecule with a hydrogen atom from another.
 - b. An oxygen atom from one water molecule with an oxygen atom from another.
 - c. A hydrogen atom from one water molecule with an oxygen atom from another
 - d. A hydrogen atom and an oxygen atom from the same water molecule

- Which of the following has the highest boiling point?
 - a. H₂O
 - b. HF
 - c. NH₃
 - d. N₂

- Which of the following compounds has the lowest boiling point?
 - a. C_2H_6
 - b. C₃H₈
 - **c.** CH₄
 - d. C₅H₁₂
 - e. C₄H₁₀

- Which of the following is the correct order of boiling points for CH₃OH, C₂H₆, and Ne?
 - a. $CH_3OH < C_2H_6 < Ne$
 - b. $CH_3OH < Ne < C_2H_6$
 - c. Ne < C_2H_6 < CH_3OH
 - d. $C_2H_6 < Ne < CH_3OH$

States of Matter

The three states of matter.

- When a substance changes from one State of Matter into another State of Matter
- When the substance changes States of Matter, the molecules *remain intact*
- The changes in state are due to changes in the forces *among* molecules rather than in those *within* the molecules
- Phase -part of a system that has uniform composition and properties

Phase Change Solid \rightarrow Liquid Solid \rightarrow Gas Liquid \rightarrow Solid Liquid \rightarrow Gas $Gas \rightarrow Liquid$ $Gas \rightarrow Solid$

Process Melting **Sublimation** Freezing Vaporization Condensation Deposition

- Solid to Liquid
 - As energy is added, the motions of the molecules increase, and they eventually achieve the greater movement and disorder characteristic of a liquid
- Liquid to Gas
 - As more energy is added, the gaseous state is eventually reached, with the individual molecules far apart and interacting relatively little

- Boiling Point
- the temperature at which the equilibrium vapor pressure of the liquid enters the atmospheric pressure
 - same as the condensation point
- Freezing Point
 - the temperature at which the solid and liquid are in equilibrium at 1 atm
 - same as the melting point

Heat

Heat

- The amount of Heat or Energy it takes to change a substance from a solid to a liquid is known as the heat of fusion. Units $(\frac{J}{g} \text{ or } \frac{J}{mol})$
- The amount of Heat or Energy it takes to change a substance for a liquid to a gas is called the heat of vaporization. Units $(\frac{J}{g} \text{ or } \frac{J}{mol})$

Heat

Phase Change Calculations

It is important to be able to calculate the amount of heat energy required to raise the temperature of a substance through a phase change.

Do we remember this expression?

$$Q = m * C * (T_f - T_i)$$

- Q = Specific Heat
- m = mass (g) or mol (depending on C)
- C is the specific heat (either $\frac{J}{g * C}$ or $\frac{J}{mol * C}$)
- T_f is temperature final
- *T_i* is temperature initial

Phase Change Calculations

We are going to modify this equation slightly.

Now it is going to be....

Solid To Liquid $Q = m * C_s * (T_{fs} - T_{is}) + m * Heat of Fushion + m * C_l * (T_{fl} - T_{il})$

Liquid to Gas

 $Q = m * C_{l} * (T_{fl} - T_{il}) + m * Heat of Vaporization + m * C_{g} * (T_{fg} - T_{ig})$

OR Solid to Gas *Q* = *Solid to Liquid Equation* + *Liquid to Gas Equation*

Phase Change Calculations

Example: How much heat is required to change 15 g of ice at -15°C into 15 g of water vapor?

- The Specific Heat of water is 4.186 $\frac{J}{g * {}^{\circ}C}$
- The Specific Heat of Ice is 2.03 $\frac{J}{g * ^{\circ}C}$
- The heat of fusion for ice is $6.01 \frac{kJ}{mol}$
- The heat of vaporization for water is 40.7 $\frac{kJ}{mol}$

- Which scenario would cause more damage and why?
 - a. Getting burned by steam
 - b. Getting burned by boiling water

What would happen to the phase change diagram if my intermolecular forces increased?

Heat

An ice cube tray contains enough water at 10.0 °C to make 18 ice cubes that each has a mass of 30.0g. The tray is placed in a freezer that uses CF₂Cl₂ as a refrigerant. The heat of vaporization of CF_2Cl_2 is $158\frac{J}{a}$. What mass of CF₂Cl₂ must be vaporized in the refrigeration cycle to convert all the water to ice? The heat capacities for $H_2O_{(s)}$ and $H_2O_{(l)}$ are 2.03 $\frac{J}{g * C}$ and 4.18 $\frac{J}{g_* \circ C}$ respectively. The enthalpy of fusion for ice is $6.02 \ \frac{\tilde{k}J}{mol}.$

Chemistry

Chapter 10 Liquids and Solids – but mostly liquids

Section 1

Homework: Pg 431 – 432j Problems: Not Collected 14,15,16,17,37,38,39,40,41,42,43,44, 99,100,101,102,103 The challenge problem: 104